Question		on	Answer	Μ	Guidance
1					
	а	i	$P = V^2/R = 230^2/R = 1500$	C1	accept I = P/V = 6.52 A and R = 230/6.52
			R = 35.3 Ω	A1	allow 52900/1500 = 35 Ω , i.e. some working shown
		ii	use of $\rho = RA/I$ or $R = \rho I/A$	C1	formula
			$I = 35 \times 7.8 \times 10^{-8} / 1.1 \times 10^{-6}$	C1	correct substitution
			l = 2.5 (m)	A1	answer (2.48)
	b		resistors and motor wired in parallel to supply	B1	S1 S2 S3
			switches correctly placed (open or closed)	M1	
			any suitably labelled symbols; components in correct order	A1	
					do not expect switches to be labelled
	С	i	power is inversely proportional resistance (for same V)	B1	accept: (same V so for) larger/smaller power need
					(larger/smaller I and so) smaller/larger resistance
			resistance of wire is inversely proportional to c-s area/diameter	B1	accept smaller c-s area/diameter (of wire) causes
			squared (as I and ρ are fixed/same)		larger resistance or vice versa
		ii	$P α A$ (because $P = V^2/R = V^2 A/\rho I$)	B1	accept R_{1000} = 52.9 Ω and $R \alpha 1/A$
			or $P \alpha d^2$ (because $A = \pi d^2/4$)		[where $A_d = 5.2 \times 10^{-8} \& A_D = 7.8 \times 10^{-8}$]
			$1.0/1.5 = (d/D)^2 = 2/3$	M1	so $35.3 / 52.9 = [(d/D)^2 \text{ or } A_d/A_D] = 2/3$
			so d = 0.82 D	A1	[where d = $2.57 \times 10^{-4} \& D = 3.15 \times 10^{-4}$]

Question		on	Answer	М	Guidance
	d		total current in circuit = 2600/230 = 11.3 A	M1	accept I = 2500/230 = 10.9 A
			so 13 A fuse required	A1	
	е	i	(a unit of) <u>energy</u> equal to 3.6 MJ or 1 kW for 1 h/AW	B1	e.g. 1000 W for 3600 s or similar;
					NOT 1 kW per hour
		ii	1.6 x 4 x 18	C1	allow 1 mark for 108 p; i.e. using 1.5 x 4 x 18
			115 (p)	A1	or 1 mark for 79 p; i.e. using 1.1 x 4 x 18
					NOT 72 p
			Total question 1	18	

Question		on	Answer	Marks	Guidance
2	а	i	V is not proportional to I	B1	accept not a straight line; R is not constant
		ii	R (approximately) constant up to V = 0.5 V and I = 50 mA	B1	allow graph is (almost) linear/straight (to V = 0.5 V) or constant gradient
			so R = 0.5/0.05 = 10 (Ω)	B1	allow any correct calculation, e.g. 0.2/0.02
		111	the resistivity/resistance of the (metal) filament increases with temperature the larger the current in the filament the hotter it becomes/AW	B1 B1	<u>larger</u> <u>current</u> heats filament <u>so</u> resistance increases or electron-ion collisions increase/AW; allow atom for ion
	b		Any potential divider argument or calculation In the light parallel combination less than or about 1 Ω /AW so V across lamp less than 0.5 V (so lamp out)/ small compared to V across 25 Ω	B1 B1 B1	QWC the arguments must be clear for full marks allow $R_{lamp} = 10$ to 25 Ω for any calculation or comparison of voltage across 25 Ω to 1 Ω N.B. answers given in terms of current are likely to score zero
			<i>In the dark</i> parallel combination about 25 Ω/AW so V across lamp approximately 6.0 V so lamp on	B1 B1	
			Total	10	

Question		on	Answer	Marks	Guidance
3	а	i	ammeter in series voltmeter in parallel with LED	B1	both correct to score 1 mark
		ii	(at 20 mA) V_{led} = 4.0 V V _R = 0.020 x 100 = 2.0 V so p.d. = 6.0 V	B1 C1 A1	allow R _{led} = (4.0/ 0.02) = 200 Ω p.d. = 0.020 (200 + 100) allow answer to 1 SF
	b	i	energy in eV = $4.1 \times 10^{-19}/1.6 \times 10^{-19} = 2.6$ (eV)	B1	expect 2.56 eV
		ii	LED strikes at 2.6 V/ only conducts above 2.6 V an electron must pass through a p.d. of 2.6 V to lose energy as a photon of blue light/AW.	M1 A1	
	С	i	$n = I/e = 0.02/1.6 \times 10^{-19}$ = 1.3 x 10 ¹⁷	C1 A1	expect 1.25 x 10 ¹⁷
		ii	energy/s = 1.25 x 10 ¹⁷ x 4.1 x 10 ⁻¹⁹ or 2.6 V x 0.020 A = 0.051 to 0.053 (J s ⁻¹)	C1 A1	ecf (c)(i); NOT 4.0 x 0.020 answer is 0.053 using 1.3 x 10 ¹⁷
		iii	efficiency = $0.052/(4.0 \times 20 \times 10^{-3})$ = 0.64	C1 A1	ecf (c)(ii) accept V _{strike} /V _{operate} = 2.6/4.0 or any other correct (P or W out)/ (P or W in) calculation accept 64 %
	d		shape similar to the curve drawn leaving x-axis at close to 2.0 V and passing through (3.4, 20)	B1 B1	Within half a square
			Total	15	