Question			Answer	M	Guidance
	a	i	$\begin{aligned} & P=V^{2} / R=230^{2} / R=1500 \\ & R=35.3 \Omega \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept $\mathrm{I}=\mathrm{P} / \mathrm{V}=6.52 \mathrm{~A}$ and $\mathrm{R}=230 / 6.52$ allow $52900 / 1500=35 \Omega$, i.e. some working shown
		ii	$\begin{aligned} & \text { use of } \rho=\mathrm{RA} / \mathrm{l} \text { or } \mathrm{R}=\mathrm{\rho l} / \mathrm{A} \\ & \mathrm{I}=35 \times 7.8 \times 10^{-8} / 1.1 \times 10^{-6} \\ & \mathrm{I}=2.5(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	formula correct substitution answer (2.48)
	b		resistors and motor wired in parallel to supply switches correctly placed (open or closed) any suitably labelled symbols; components in correct order	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	do not expect switches to be labelled
	c	i	power is inversely proportional resistance (for same V) resistance of wire is inversely proportional to c-s area/diameter squared (as I and ρ are fixed/same)	B1 B1	accept: (same V so for) larger/smaller power need (larger/smaller I and so) smaller/larger resistance accept smaller c-s area/diameter (of wire) causes larger resistance or vice versa
		ii	$\begin{array}{ll} \text { P } \alpha A & \text { (because } \left.P=V^{2} / R=V^{2} A / \rho l\right) \\ \text { or } P \propto d^{2} & \text { (because } \left.A=\pi d^{2} / 4\right) \\ 1.0 / 1.5=(d / D)^{2}=2 / 3 \\ \text { so } d=0.82 D & \end{array}$	B1 M1 A1	$\begin{aligned} & \text { accept } R_{1000}=52.9 \Omega \text { and } R a 1 / A \\ & {\left[\text { where } A_{d}=5.2 \times 10^{-8} \& A_{D}=7.8 \times 10^{-8}\right]} \\ & \text { so } 35.3 / 52.9=\left[(d / D)^{2} \text { or } A_{d} / A_{D}\right]=2 / 3 \\ & {\left[\text { where } d=2.57 \times 10^{-4} \& D=3.15 \times 10^{-4}\right]} \end{aligned}$

Question		Answer	M	Guidance
d		total current in circuit $=2600 / 230=11.3 \mathrm{~A}$ so 13 A fuse required	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	accept I $=2500 / 230=10.9 \mathrm{~A}$
e	i	(a unit of) energy equal to 3.6 MJ or 1 kW for $1 \mathrm{~h} / \mathrm{AW}$	B1	e.g. 1000 W for 3600 s or similar; NOT 1 kW per hour
	ii	$\begin{aligned} & 1.6 \times 4 \times 18 \\ & 115(\mathrm{p}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	allow 1 mark for 108 p ; i.e. using $1.5 \times 4 \times 18$ or 1 mark for 79 p ; i.e. using $1.1 \times 4 \times 18$ NOT 72 p
		Total question 1	18	

Question			Answer	Marks	Guidance
2	a	i	V is not proportional to I	B1	accept not a straight line; R is not constant
		ii	R (approximately) constant up to $\mathrm{V}=0.5 \mathrm{~V}$ and $\mathrm{I}=50 \mathrm{~mA}$ so $R=0.5 / 0.05=10(\Omega)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	allow graph is (almost) linear/straight (to $\mathrm{V}=0.5 \mathrm{~V}$) or constant gradient allow any correct calculation, e.g. 0.2/0.02
		iii	the resistivity/resistance of the (metal) filament increases with temperature the larger the current in the filament the hotter it becomes/AW	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	larger current heats filament so resistance increases or electron-ion collisions increase/AW; allow atom for ion
	b		Any potential divider argument or calculation In the light parallel combination less than or about $1 \Omega / \mathrm{AW}$ so V across lamp less than 0.5 V (so lamp out)/ small compared to V across 25Ω	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	QWC the arguments must be clear for full marks allow $\mathrm{R}_{\text {lamp }}=10$ to 25Ω for any calculation or comparison of voltage across 25Ω to 1Ω N.B. answers given in terms of current are likely to score zero
			In the dark parallel combination about $25 \Omega / \mathrm{AW}$ so V across lamp approximately 6.0 V so lamp on	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
			Total	10	

Question			Answer	Marks	Guidance
3	a	i	ammeter in series voltmeter in parallel with LED	B1	both correct to score 1 mark
		ii	$\begin{aligned} & (\text { at } 20 \mathrm{~mA}) \mathrm{V}_{\text {led }}=4.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=0.020 \times 100=2.0 \mathrm{~V} \\ & \text { so p.d. }=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { allow } R_{\text {led }}=(4.0 / 0.02)=200 \Omega \\ & \text { p.d. }=0.020(200+100) \\ & \text { allow answer to } 1 \mathrm{SF} \end{aligned}$
	b	i	energy in $\mathrm{eV}=4.1 \times 10^{-19} / 1.6 \times 10^{-19}=2.6(\mathrm{eV})$	B1	expect 2.56 eV
		ii	LED strikes at $2.6 \mathrm{~V} /$ only conducts above 2.6 V an electron must pass through a p.d. of 2.6 V to lose energy as a photon of blue light/AW.	M1 A1	
	c	i	$\begin{aligned} & \mathrm{n}=\mathrm{I} / \mathrm{e}=0.02 / 1.6 \times 10^{-19} \\ & =1.3 \times 10^{17} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	expect 1.25×10^{17}
		ii	$\begin{aligned} & \text { energy/s }=1.25 \times 10^{17} \times 4.1 \times 10^{-19} \text { or } 2.6 \mathrm{~V} \times 0.020 \mathrm{~A} \\ & =0.051 \text { to } 0.053\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf (c)(i); NOT 4.0×0.020 answer is 0.053 using 1.3×10^{17}
		iii	$\begin{aligned} & \text { efficiency }=0.052 /\left(4.0 \times 20 \times 10^{-3}\right) \\ & =0.64 \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	```ecf (c)(ii) accept }\mp@subsup{V}{\mathrm{ strike }}{}/\mp@subsup{V}{\mathrm{ operate }}{}=2.6/4.0 or any other correct (P or W out)/ (P or W in) calculation accept 64 %```
	d		shape similar to the curve drawn leaving x-axis at close to 2.0 V and passing through $(3.4,20)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Within half a square
			Total	15	

